Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tuncer Hökelek,^a* Emine Kılıç^b and Sebla Dinçer^b

^aHacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey, and ^bAnkara University, Department of Chemistry, 06100 Tandoğan, Ankara, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.058 wR factor = 0.051 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{12}H_7BrN_2O$, is a 2-bromo, *N*6-oxide derivative of the ligand benzo[*c*]cinnoline. The benzo[*c*]-cinnoline skeleton is nearly planar. The dihedral angle between the two benzenoid rings is 2.1 (1)°.

2-Bromobenzo[c]cinnoline 6-oxide

Received 15 June 2001 Accepted 20 June 2001 Online 29 June 2001

Comment

The structures of benzo[c]cinnoline derivatives with different substituents bonded at different positions of the benzo[c]cinnoline skeleton have been the subject of much interest in our laboratory. Examples include 1-morpholinobenzo[c]cinnoline, (II) (Hökelek *et al.*, 1990), 1-piperidinobenzo[c]cinnoline, (III), and 3-piperidinobenzo[c]cinnoline, (IV) (Hökelek *et al.*, 1991a), 2-pyrrolidinobenzo[c]cinnoline, (V), and 4-pyrrolidinobenzo[c]cinnoline, (VI) (Hökelek *et al.*, 1991b), 2-fluorobenzo[c]cinnoline, (VII) (Hökelek, 1991), and 1-nitrobenzo[c]cinnoline, (VIII) (Hökelek *et al.*, 1999).

Benzo[c]cinnoline and some of its derivatives are known to have mutagenic (Leary *et al.*, 1983), antirheumatic (Matter, 1957; Erlenmeyer, 1958), herbicidial (Entwistle *et al.*, 1981) and carcinogenic (Ashby *et al.*, 1980) physiological activities. They have also been used as bleach catalysts in the processing of photographic silver-dye bleach materials (Jan, 1980). The structures of benzo[c]cinnoline (Van der Meer, 1972) and octachlorobenzo[c]cinnoline (King *et al.*, 1983) have been described as complexes with bis(tricarbonyliron) (Doedens, 1970) and benzoatocopper(I) (Toth *et al.*, 1987).

Benzo[c]cinnoline derivatives including N-oxides have been reviewed by Barton & Cockett (1962). As far as we know, there are no reports on the structures of benzo[c]cinnolines substituted with alkyl, alkoxy, aminoalkyl, nitro or N-oxide groups. The structure determination of the title compound, (I), was undertaken in order to understand the effects of changing the types and positions of the substituent and to permit a comparison of its structure with those of previously reported benzo[c]cinnolines.

Fig. 1 shows compound (I) with the atomic numbering. It is a 2-bromo, N6-oxide derivative of the ligand benzo[c]-

Printed in Great Britain – all rights reserved Acta Cryst. (2001). E57, 0645–0647

© 2001 International Union of Crystallography

An ORTEPII (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

cinnoline. The benzo[c]cinnoline skeleton consists of almost planar rings. The maximum distances from the least-squares planes are 0.014(4), -0.013(4) and -0.010(4) Å for rings α (C1–C5,C12), β (C5,N5,N6,C6,C11,C12) and γ (C6–C11), respectively. The rings are twisted slightly with respect to each other. The dihedral angles between their least-squares planes are $\alpha - \beta = 2.2 (1)^{\circ}$, $\alpha - \gamma = 2.1 (1)^{\circ}$ and $\beta - \gamma = 0.5 (1)^{\circ}$. In benzo[c]cinnoline (Van der Meer, 1972), the dihedral angle between the two benzenoid rings is $\alpha - \gamma = 2.5^{\circ}$. The dihedral angle $\alpha - \gamma$ depends on the steric interactions between the benzo[c] cinnoline and the substituents at different positions. The interaction is greatest with the substituents at position 1. The corresponding $\alpha - \gamma$ angles are reported as 11.7° in (II), 14.32 (6) and 3.4 (1)° in (III), 1.8 (1)° in (IV), 1.32 (6)° in (V), 4.95 (7)° in (VI), 0.50 (7)° in (VII) and 8.4 (2)° in (VIII).

There are steric interactions between the H atoms at C1 and C10 (H1···H101 = 2.23 Å), and between the H atom at C7 and the O atom at N6 (O1 · · · H71 = 2.38 Å). The benzo [c]cinnoline skeleton has enlarged C1-C12-C11 [124.6 (4) $^{\circ}$] and C10-C11-C12 [124.9 (3)°] angles and smaller ones at the opposite side. The 6-oxide substituent generated enlarged N5-N6-C6 $[124.1 (3)^{\circ}],$ N6-C6-C7 [119.1 (3)°], C7-C6-C11 $[122.2 (4)^{\circ}]$ and N5-C5-C12 $[124.2 (4)^{\circ}]$, and narrowed N6-C6-C11 [118.7 (4)°] and C5-N5-N6 [117.6 (3)°] angles in the benzo[c] cinnoline skeleton with respect to the previously reported corresponding ones (Table 2).

The N6–O1 [1.268 (4) Å] bond length is highly shorter than the pyridine N-oxide N-O [1.304 (15) Å; Allen et al., 1987], probably due to the electron resonating between the O atom and the benzo [c] cinnoline skeleton.

As a general trend, the C1-C2, C3-C4, C9-C10 and C11-C12 bonds, in the benzo [c] cinnoline skeleton are shorter than the other bonds as determined crystallographically in all of the benzo [c] cinnoline ligands. This determination is in agreement with the theoretical calculations made by Mulliken (1955) and Hoffman (1963).

Experimental

Compound (I) was synthesized according to the literature method of Kılıç & Tüzün (1990). Crystals suitable for X-ray crystallography were obtained from dichloromethane-ethyl acetate (m.p. 518 K).

Crystal data

C ₁₂ H ₇ BrN ₂ O	$D_x = 1.813 \text{ Mg m}^{-3}$
$M_r = 275.10$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/a$	Cell parameters from 25
a = 14.446 (3) Å	reflections
b = 3.963 (1) Å	$\theta = 10 - 11^{\circ}$
c = 17.807 (7) Å	$\mu = 4.05 \text{ mm}^{-1}$
$\beta = 98.59 \ (2)^{\circ}$	T = 298 K
$V = 1008.0 (5) \text{ Å}^3$	Rod-shaped, yellow
Z = 4	$0.30 \times 0.10 \times 0.10$ mm

Data collection

Enraf-Nonius CAD-4 diffract- $R_{\rm int} = 0.014$ ometer $\theta_{\rm max} = 26.3^{\circ}$ $\omega/2\theta$ scans $h = -18 \rightarrow 17$ Absorption correction: ψ scan (Fair, $k = 0 \rightarrow 4$ 1990) $l = 0 \rightarrow 22$ $T_{\min} = 0.621, \ T_{\max} = 0.667$ 3 standard reflections 2420 measured reflections frequency: 120 min 2031 independent reflections intensity decay: 1% 1764 reflections with F > 0

Refinement

Refinement on F	H-atom parameters constrained
R = 0.058	$w = 1 / [\sigma(F)^2 + (0.02 F)^2 + 1.0]$
wR = 0.051	$(\Delta/\sigma)_{\rm max} = 0.01$
S = 1.12	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
1764 reflections	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
145 parameters	

Table 1

Selected bond lengths (Å).

Br1-C2	1.892 (4)	C6-N6	1.426 (5)
N6-O1	1.268 (4)	C3-C4	1.359 (6)
C5-N5	1.377 (5)	C7-C8	1.358 (7)
N5-N6	1.298 (5)	C1-C2	1.368 (6)
C6-C7	1.389 (6)	C9-C10	1.367 (6)

Table 2

Comparison of the bond angles (°) in the benzo[c]cinnoline skeleton of(I) with the corresponding values in the related compounds (III), (IV), (V),(VI), (VII) and (VIII)..

Angles	(I)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)
C5-C12-C11	116.9 (3)	115.1 (2)	117.7 (4)	116.0 (2)	116.1 (2)	117.0 (2)	116.5 (1)
C5-C12-C1	118.5 (4)	116.7 (2)	115.9 (4)	119.4 (2)	120.3 (2)	118.5 (3)	115.2 (2)
C11-C12-C1	124.6 (4)	128.0 (2)	126.3 (4)	124.7 (2)	123.7 (2)	124.5 (3)	128.4 (1)
C12-C11-C10	124.9 (3)	126.4 (2)	125.7 (4)	125.5 (2)	124.4 (2)	124.8 (2)	126.9 (2)
C12-C1-C2	119.6 (4)	119.2 (3)	121.6 (4)	120.6 (2)	118.4 (2)	117.7 (3)	123.5 (2)
C1-C2-C3	122.0 (4)	122.1 (3)	122.5 (4)	118.8 (2)	122.9 (2)	124.9 (3)	119.6 (2)
C2-C3-C4	118.7 (4)	119.8 (3)	116.6 (4)	120.8 (2)	121.6 (2)	118.3 (3)	119.7 (2)
C3-C4-C5	121.1 (4)	120.2 (3)	121.2 (4)	120.5 (2)	115.9 (2)	119.3 (3)	120.5 (2)
C6-C11-C12	118.4 (4)	117.3 (2)	116.7 (4)	116.3 (2)	127.1 (2)	116.4 (2)	115.6 (1)
C6-C11-C10	116.7 (3)	116.0 (2)	117.6 (5)	118.2 (2)	118.4 (2)	118.8 (3)	117.5 (2)
N5-N6-C6	124.1 (3)	119.6 (2)	119.5 (4)	119.7 (2)	119.9 (2)	120.5 (2)	120.6 (1)
N6-C6-C11	118.7 (4)	122.9 (2)	123.5 (4)	123.7 (2)	123.0 (2)	123.1 (3)	123.5 (2)
N6-C6-C7	119.1 (3)	115.2 (2)	115.4 (2)	116.2 (2)	116.2 (2)	116.7 (3)	115.9 (2)
C7-C6-C11	122.2 (4)	121.8 (2)	121.0 (5)	120.1 (2)	120.8 (2)	120.2 (3)	120.7 (2)
C5-N5-N6	117.6 (3)	121.5 (2)	121.1 (4)	120.3 (2)	121.5 (2)	120.2 (3)	120.0 (2)
N5-C5-C12	124.4 (4)	122.9 (4)	121.4 (4)	123.9 (2)	122.2 (2)	122.8 (3)	123.4 (2)

The positions of the H atoms were calculated geometrically at a distance of 0.95 Å from the corresponding C atom, and a riding model was used during their refinement.

Data collection: *MolEN* (Fair, 1990); cell refinement: *MolEN*; data reduction: *MolEN*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structure: *MolEN*; molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *MolEN*.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey and also thank the Ankara University Research fund (grant No. 94050406) for financial assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Ashby, J., Styles, J. A. & Paton, D. (1980). Carcinogenesis (New York), 1, 1-7.

Barton, J. W. & Cockett, M. A. (1962). J. Chem. Soc. pp. 2454-2460.

- Doedens, R. J. (1970). Inorg. Chem. 9, 429-436.
- Entwistle, I. D., Terence, G. & Barton, J. W. (1981). Br. Patent Appl. 2 059 263; Chem. Abstr. 95, P182265g.
- Erlenmeyer, H. (1958). Br. Patent 794 775; Chem. Abstr. 52, P418.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft. The Netherlands.
- Hoffman, R. (1963). J. Chem. Phys. 39, 1397-1412.
- Hökelek, T. (1991). Acta Cryst. C47, 1432-1434.
- Hökelek, T., Kılıç, E. & Aktan, S. (1999). Acta Cryst. C55, 383-385.
- Hökelek, T., Kılıç, E. & Tüzün, C. (1991a). Acta Cryst. C47, 369-373.
- Hökelek, T., Kılıç, E. & Tüzün, C. (1991b). Acta Cryst. C47, 373-376.
- Hökelek, T., Watkin, D. J., Kılıç, E. & Tüzün, C. (1990). Acta Cryst. C46, 1027– 1029.
- Jan, G. (1980). German Patent No. 2,939,259.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kılıç, E. & Tüzün, C. (1990). Org. Prep. Proced. Int. 22, 485-493.
- King, T. J., MacBride, J. A. H., Muir, M. & Wright, P. M. (1983). J. Chem. Soc. Chem. Commun. pp. 425–426.
- Leary, J. A., Lafleur, A. L., Liber, H. L. & Blemann, K. (1983). Anal. Chem. 55, 758–761.
- Matter, M. (1957). US Patent 2 778 829; Chem. Abstr. 51, 11397.
- Mulliken, R. S. (1955). J. Chem. Phys. 23, 1833-1840.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Toth, A., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1987). Inorg. Chem. 26, 236–241.
- Van der Meer, H. (1972). Acta Cryst. B28, 367-370.